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Abstract

Modal detection of regular-shape uniform thickness beams and plates using polyvinylidene fluoride (PVDF) sensors has
been widely reported, especially related to active structural acoustic control. Here the application of PVDF sensors to a
simply supported non-uniform thickness beam for modal detection is considered. As traditional kinetic-energy-based
orthogonality conditions, based on displacement or temporal derivatives, are not applicable a new (approximate) strain-
energy-based orthogonality condition is developed. Modal sensors are designed using one-dimensional (1-D) models of the
beam and PVDF sensor, and then their performance is fully modelled in 2-D. Generally good modal discrimination is
found but errors were significant for the two lowest modes. The effects of modelling and implementation errors were
studied. An experimental modal sensor produced good agreement. Comprehensive details of the experimental system are
given, especially with respect to the preparation of the PVDF sensors. Finally, the disadvantages of using strain sensors
over other types of sensing are discussed, and it is shown that the new orthogonality condition cannot be extended to non-
uniform plates.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The application of polyvinylidene fluoride (PVDF) strain sensors to plates or beams in flexion has been
widely studied. One of the most recent motivations has been the application of active structural acoustic
control (ASAC). Here the acoustic radiation of a plate can be related through so-called radiation modes
through specific combinations of structural modal amplitudes, and the task becomes a simultaneous
detection of modal combinations. PVDF sensors are continuous sensors and thus avoid spatial aliasing
problems. The width of a sensor strip can be varied along its length to achieve the required spatial sensitivity.
In this way the output signal only requires a suitable amplifier alleviating the need for further signal
processing. Examples of two approaches of designing PVDF sensors for ASAC are described by Fuller et al.
[1] and Tanaka et al. [2].
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In this area, the analytical treatment is almost exclusively performed using the second spatial derivative of
the plate (or beam) displacement. This is because for a uniform thickness plate the second spatial derivative
can be easily related to the surface strain. For convenience the response of the PVDF sensor is also usually
described in these terms for application to uniform thickness plates, although fundamentally it measures
surface strain. When considering a non-uniform thickness beam the surface strain cannot be so conveniently
represented. However, if a beam has a non-uniformity that is a step change in thickness over part of its length
it could be considered uniform outside the region local to the step. The analytical development here is
performed both in terms of second-order spatial derivatives and more generally in terms of the internal strains
within the beam.

The Rayleigh—Ritz method solves for a series of basis functions to achieve an ecigensolution for a
simply supported beam and was previously considered by the author [3] for this type of problem.
Due to the discontinuities in beam thickness a large number of basis functions were needed and this
was the cause of an overshoot phenomenon in the apparent surface strain in the region of the discontinuity
that is similar to Gibb’s phenomenon. This caused spurious variations in the PVDF sensor width in these
regions.

Clark and Burke [4] considered the practical aspects of applying such sensors. One result was that small
sensor placement errors can lead to errors in the sensor response. This can be one possible cause of
experimental frequency responses containing glitches or deviations from modelled results. In most cases
reported in the literature when applying PVDF sensors to beams, the beam is considered to be a one-
dimensional (1-D) system and thus only a 1-D model of the sensor is necessary. The present author uses a 2-D
model for the beam and considers the error in using a 1-D model for the sensor. This is important if a practical
system is to be accurately modelled.

To the author’s knowledge this is the first time that a strain-energy-based orthogonality condition for modal
detection on a non-uniform thickness beam using a PVDF sensor has been reported. Comprehensive details
are also given on the application of the beam system, especially the sensors, as little information is generally
given in the literature on the use of PVDF, which has many practical issues in its application.

The article is structured as follows. Section 2 recapitulates orthogonality and develops the strain-energy-
based orthogonality condition. Section 3 deals with appropriate models for the PVDF sensor, and Section 4
details how PVDF sensors are designed for modal detection based on the new orthogonality condition.
Section 5 details the numerical model, and in Section 6 numerical results for the detection of different modes
are given. Section 7 details the experimental system and in Section 8 the results of an experimental
implementation of a modal sensor are given. Section 9 discusses issues arising from the reported work and its
application. The work is concluded in Section 10. Appendix A is given for the derivation of the modal
excitation of a non-uniform thickness plate by piezoelectric actuators.

2. Orthogonality

In the vibration of plates, shells and beams, any linear vibration distribution can be considered to be the
sum of a series of eigenfunctions (mode shapes) each having a natural response at their corresponding
eigenvalues (modal or natural frequencies). Solution of the mode shapes and natural frequencies is only
possible on a theoretical basis for a handful of simple cases. Otherwise numerical methods, often involving
dividing the structure into a small number of elements, are required.

2.1. Kinetic-energy-based orthogonality

An important property of an energy conservative system is that orthogonality exists mutually between all
mode shapes having distinct natural frequencies (which is usually the case). If the mth and nth mode shapes of
a plate of area S are denoted ¢,, and ¢,, then the orthogonality is stated by [5]

Yompnds =4 T 1
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where m” is the plate mass area density and A,, is the modal mass. This provides a simple expression
that is directly applicable to systems measuring the transverse displacement (or the time derivatives of
velocity or acceleration). It should be noted that the orthogonality condition is normally given for uniform
plates where the mass distribution is constant and m” can be excluded from the definition. However, for
non-uniform plates (non-uniform thickness or material) the mass distribution must be included to achieve
correct independent modal detection. A consequence of orthogonality is modal independence. This is
demonstrated by considering the kinetic energy of a plate due to either mode m or mode 7 in isolation, which
are given by

1 1
KE, = / m'v, 9, dS,  KE, = / m'v,; dS, (2a,b)
S S

where v,, and v, the transverse velocity amplitudes. When both modes exist simultancously and are mutually
independent, the total vibrational energy is the sum of the individual energies, KE,, and KE,, to ensure
conservation of energy. So

1
KEn = z/ m”(vm(f)m + Un(/)n)zdS = KE,, + KE,. (3a,b)
S

The resulting cross product will be zero when m#n confirming modal independence as a consequence of the
orthogonality condition (1).

2.2. Strain-energy-based orthogonality

Two derivations of the strain-energy-based orthogonality condition are given here. The first relates to the
common expressions of the strain energy of a plate and the response of a PVDF sensor using second spatial
derivatives. This is directly applicable to the use of the Rayleigh—Ritz analysis for the beam solution. The
second is based on the surface strain of a plate, and is applicable to the use of finite element analysis (FEA). In
both cases an approximation is made that the only significant beam bending occurs along the beam length for
the modes of interest. This assumption is validated numerically in Section 6.1.

2.2.1. Orthogonality condition based on second spatial derivative

The maximum potential energy, U, (through strain) of a plate of dimensions (L., L,) undergoing vibration
is given in many standard texts (for example Ref. [6]). It may be adapted for application to non-uniform
plates as

| [l L Ew\S  [eEw\ *w W W
UP=§/O /0 D(%J’)((w) +<6—)/2> +2U(X,J’){WW'|‘2(1—U(X,J’))(W> dXdJ’] , 4

where W is the transverse plate displacement, v is Poisson’s ratio. The plate bending rigidity, D, for a non-
uniform plate is defined as

_ E(x, )i’ (x,y)

12(1 = v(x,)*)’
where E is the Young’s modulus of the plate and / is the plate thickness. It is assumed here that all changes in
thickness are plane symmetric about the mid-surface plane of the beam, which is also the neutral bending
plane. Although valid for gradual variations in thickness (for example, a tapered beam) Eq. (4) is unlikely to
be valid in the region of a discontinuity in thickness as it assumes that strain and stress vary linearly in the
z-direction. This is discussed in more detail below.

Using the same derivation method as above, relying on modal independence, a four term “orthogonality
condition” results [3]. The equality to zero could be met by combinations of non-zero components and does
not allow a one-term orthogonality condition, for application along the sensor length, to be derived.
Considering the beam as a 1-D beam system the beam displacement can be expressed as the sum of a series of
1-D spatial modes so that the displacement is constant in the direction of the y-axis. In this way the strain

D(x,y) (5)
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energy in the beam can be approximated as
2

Lh b W
Up~ 5/0 ; D(x,y) <6x2 ) dxdy. (6)

The modal independence described above also applies to the strain energy of each mode and this allows a
strain-energy-based orthogonality condition that has practical application as it can be defined using one term

alone:
& bn O 0 mEn
/0 DNTa 32 ¥ 42 = @)

m =n.

where /12 is the modal stiffness. If the non-uniform beam is homogenous (only has variable beam thickness)
the condition can be more simply expressed as

Ly 2 2 0 m#n,
| el e { o ®)
0 m

ox2 Ox2 m=n.

2.2.2. Orthogonality condition based on surface strain
The strain energy of a plate or beam in flexion can also be directly expressed in terms of the internal plate
strains and stresses [7]

. v ph(x)/2

=3 / / / (0xex + 08y + 026 + Ty Yy + TV + Tp27)) dzdy i, )
2 0 —h(x)/2 7 7

where 6, 0,, 0. and &, ¢,, ¢. represent the stress and strain components in the coordinate directions indicated

in the subscripts, and 7y, Ty, T,. and ), Y« y- represent the shear stresses and strains using the common

convention given in Ref. [7]. Here it is also stated that for thin plates ¢, 7., y,. can be regarded as insignificant

and their corresponding product terms removed. Using the following identities:

E
1_—122(8«‘( + US)’)’ Oy = 1_—122(% + USX), Txy = Gnya (10)
where G is the shear modulus, which is equal to E/2(1+v), the strain energy can be expressed in terms of
normalised strain components as

U —L/ / /+’1(f)/2 & + &2 + 2uee +u 2 | dzdydx (11)
P 2(1 —v2) Jo 0 —h(x)/2 * ' A 2 Yy e

Each term taken in order corresponds directly to those in Eq. (4). As with the derivation based on the second
spatial derivative, for lower order modes a good approximation of the strain energy can be obtained using just
the x-strain term along the beam length

hx)/2
~ ex(x ) 1" dzdx. 12
U 2<1—v2)/ /hm/z (o (2

For application to a sensor that measures the surface strain of the beam, &, the strain energy can be expressed
in such terms as

Ox =

U 3 [ 0P rax 13)

g¢m> 18 a generic weighting function where M denotes the method of calculation. If it is assumed that the
strain varies linearly with z, as is the case away from discontinuities in / (see Fig. 1) then,

26(x)z

e (14)

ex(x,z) =

|z| <h(x)/2
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Fig. 1. Cross-section of the beam considered (see Fig. 2) in the vicinity of one of the discontinuities in thickness showing (i) the definition
of the internal and surface layers used in the analysis of the beam, and (ii) the variation of strain with z away from and in the immediate

vicinity of the discontinuity when in flexion. Data taken from beam mode (3,1,0).
(15)

and the weighting function, g, can be seen to be
gi(x) = Jh(x).

However, it is demonstrated in Fig. 1 that the strain does not vary linearly with z near discontinuities in
thickness. A more comprehensive weighting function, g, can be defined that is the strain energy normalised to
(16)

the surface strain squared as a function of x, and is
hi(x)/2 5
f_lhzx/)/z[gx(X, z)]"dz

gn(x) =

[e5.(x)]?

(17)

g, 1s expected to be identical to g, away from discontinuities in thickness. Similar variations in stress
An orthogonality condition can be derived in terms of the surface strain, by considering two modal strain

with z as with strain are also seen. In practice g, is ambiguous at discontinuities but can be evaluated
fractionally either side of a discontinuity so as to distinguish the values on the thin and thick beam sections

“at” this point.
contributions from modes m and n of amplitudes 4,, and A4, respectively,
‘O\Y(x) = Am(pfn(x) + A,,qb‘,‘;(x),

m#n,

where ¢° is a strain mode shape. This is the strain field in the x-direction due to the corresponding normalized
m=n.

(displacement) mode shape. Modal independence was established above, and so both modal contributions
must equal the sum of the individual values of the modal strain energy and the following orthogonality
(18)

condition results:
L, ‘ ‘
/ g<M>(x) ¢;1(x)¢;(X) dx ~ A
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If both the stress and strain are available, as is the case here from FEA analysis, a potentially more accurate
weighting function can be calculated as
h(x)/2

—h(x)/2 0+(x, 2)ex(x,z)dz
goa(x) = )/

[0
The differences in using g;, g, and g, are studied below. In the following g 5,5 Will be used to denote a generic

weighting function that could be any of these three. It is noted that the use of the normalised strain is required
to derive the orthogonality condition.

(19)

2.2.3. Equivalence of the two strain-energy-based orthogonality conditions

The orthogonality conditions given above in Egs. (8) and (18) are both derived from consideration of the
strain energy, and are therefore equivalent. For analysis based on the second spatial derivatives, commonly
used for application to uniform thickness plates, Eq. (8) is best suited, and states that the weighting function
required is /°(x). If the surface strain is directly accessible, as with FEA, then g, or g,, can be evaluated and
these are expected to be proportional to /(x) away from discontinuities in thickness. Recalling the 1-D
approximate relation between the surface strain and the beam bending [7]

2
2=z (20)
X7 | z=nx))2
and its equivalent in terms of the bending and surface strain modes is
2
B30 o he) @
0x?2

Substituting Eq. (21) into Eq. (18) the orthogonality condition (8) results (for x away from disconti-
nuities in /(x)).

3. Polyvinylidene fluoride strain sensors

The use of surface applied sensors to measure plate flexion through surface strain is commonplace, in
particular sensors employing PVDF. PVDF is a thin flexible sheet whose shape can be conveniently
formed to provide an appropriate weighting function. Its use for sensing plate vibration has been well
reported [4,8,9]. The surface strain of a plate in flexion can be related to the second-order spatial
derivative of the plate displacement, and when applying PVDF sensors to uniform thickness plates this
is the parameter commonly used; however it may also be defined more simply and directly in terms of the
surface strain. For this reason the study of non-uniform thickness plates here begins in terms of the spatial
derivatives.

The response of a PVDF sensor strip applied, at y = y; to a beam of length L, and width L,, with
respect to its transverse vibratory movement is given by a change of charge, ¢(¢), between its electrode

surfaces as [3]
o 1 [l [rthSe) ;W W
~ A0 L 0 0
e 2/0 /y;bS(x) ) (631 o Ty ) dydx 22

where W the displacement field of the plate, €3, and €3, are the charge constants of the PVDF. It is assumed
that the skew/cross-axis sensitivity (e3) is zero [3] and the sensor thickness is much smaller than /. The sensor
has a width profile function of S(x) and a corresponding scaling factor b. The height function / is incorporated
inside the integral as it is a function of x for a non-uniform thickness plate and it provides a natural spatial
sensor weighting in addition to S(x). For dominant bending in the x-direction a simplified 1-D model of this
sensor can be used:

. L, 62 W
q(t) ~ el b /0 S(x)h(x)mdx. (23)
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The response is more fundamentally expressed in terms of the surface strain of the plate [10], in this case
Vs +bS(>C)
ww=e [ |, (i daom) ards 24
(x

where &5 and a are the surface strain of the plate in the x- and y-directions, respectively. As above, for a 1-D
cons1derat10n the response be simplified to

q(t) ~ Ze'“”emb/ S(x)el (x) dx. (25)

Apart from regions near discontinuities in beam thickness, Eqs. (23) and (25) are equivalent.

4. Sensor design

Using the expressions for the strain energy of the beam and the single term orthogonality condition, a
PVDF sensor can be designed for modal detection. The design is defined by the shape function, S(x), which
defines the width profile of the sensor along its length. It is noted that the design can only proceed using the
approximate 1-D orthogonality condition and a 1-D consideration of the PVDF sensor. Thus a 1-D beam
model is used to describe the displacement, W, as a sum of 1-D spatial modes ¢,, and corresponding modal
amplitudes 4,, as

W)= Ant(x). (26)

However, later on the numerical model will allow the complete PVDF response to be predicted and the
error in using the 1-D model to be evaluated.

4.1. Design based on second-order spatial derivative

A sensor width profile can be defined to detect mode d independently. For a non-uniform thickness beam
the width profile Sp(d,x) is a function of the second-order spatial derivative of the desired mode, ¢, and the
height function of the beam

Sp(d, x) = h2(x) i ¢d . (27)

The charge output of the sensor can be obtained by substltutmg Eqgs. (26) and (27) into Eq. (23) and applying
the orthogonality condition (8)

q4() = Age'ed bA" . (28)

m*

Thus a factor equal to the square of the height profile must be included in the sensor width profile to
supplement the factor 4 that is naturally included in applying the PVDF sensor to the surface of a beam with
variable thickness.

4.2. Design based on surface strain

Using the generic notation above whereby the sensor design method is defined as M = {h, n, c¢}, the
corresponding width profiles S, are defined as functions of the surface strain of the desired mode, ¢, and the
appropriate weighting functions as

Su(d,x) = gy (X)Py(x), (29)
which similarly leads to the detection of the amplitude of the desired mode:

q.(t) =~ Ade]‘“’e31 bA;. (30)
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In both Egs. (28) and (30) approximation equalities are used as they are based on 1-D approximations of the
strain energy of the beam, the corresponding orthogonality conditions, and a 1-D model of the PVDF sensor.

5. Numerical model of beam system

The non-uniform thickness beam considered in this paper, shown in Fig. 2, is made of stainless steel and has
dimensions 380 x 40 mm?*. The nominal thickness is 2mm, but over a 40 mm region in the beam centre the
thickness is augmented to twice-thickness (4 mm). The beam is symmetric about its mid-surface, and is simply
supported at both ends. The beam system was modelled as a 3-D system using FEA package (ANSYS [11])
and subsequently in 2-D in MATLAB [12]. Even though the system is a 1-D system to a first-order
approximation, a 1-D model is not sufficiently accurate. The combination of free—free boundary conditions
(on the long parallel edges of the beam) and a finite Poisson’s ratio causes significant curvature of the
displacement contours across the beam width. This is evident in Fig. 2 where the displacement field for mode
(3,1,0) is given as an example.

A block diagram of the numerical model is shown in Fig. 3, and this is now discussed. The displacement
modes and corresponding surface strain modes are calculated using a finite element model. The beam was
meshed using element SOLID 45 in 0.5 mm thick layers. The width of the beam was divided into 20 elements.
Two-millimeter mesh divisions were used in the x-direction over the majority of the beam length. Over a
section 20 mm from the change of thickness the mesh was linearly increased to 1 mm, and 1 mm divisions were
used in the central region. The beam material properties were: E = 200 x 10° N/m?, v = 0.28, p = 7800 kg/m".
First a modal analysis was performed to solve for the natural frequencies of the system, then using a unit
driving force at each natural frequency and harmonic analysis, both displacement and strain mode shapes are
determined.

These mode shapes are further processed in MATLAB. The modes are re-sampled to an even grid of
761 x 81, giving a resolution of about 0.5 mm in each axis. For given piezoceramic actuator positions a modal
model is used to calculate the modal excitation in terms of displacement modal amplitudes. The displacement
modal amplitudes are calculated similarly as shown by Dimitriadis et al. [13], but in this case a non-uniform
thickness beam is used and a more general expression is derived in Appendix A. The modal amplitudes, 4,,,
(for mode order m, n), are based on Eq. (A.15) and are

_ COSPE[G;\;m(xli X2) + G£1n(yl’y2)]
Amn(w,znn - w2 + 2] émnwmnw) ’

A 31
where C, and ¢, are piezoelectric coupling term and the induced piezoelectric strain, w,,, is the modal
frequency, and x;, x5, y;, y» define the limits of the actuator. Here modal damping has been added in the
denominator, and a value of modal damping, {,,,, of 0.008 was found to provide good agreement with the

experiment measurements subsequently presented, and was used in the model. The modal mass A4,,,, is defined
in Eq. (A.16), and G, and G, are:

mn

“ a 4 a mn 4 4 2 a mn > a mn >
Y1
34,

d s ]

A A

X1

45 85 40

Fig. 2. Details of the beam system considered comprising of a simply supported stainless steel beam of dimensions 380 x 40 mm?.
The nominal thickness is 2mm except in the central region where the thickness is 4 mm. The position of the actuators is also shown.
The contour lines show the displacement field associated with mode (3,1,0).
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Fig. 3. A schematic diagram of the complete numerical model used to estimate the PVDF sensor charge output of the beam system from
the beam actuator excitation signal V. The symbols are defined in the text.

The amplitudes 4,,,, are used to scale the strain modes and their sum is thus the net surface strain across the
beam surface in the x and y axes directions (¢, and &,). The response of the PVDF sensor is then calculated by
overlaying the sensor shape on the strain fields, and a numerical integration, based on Eq. (24), performed
over the area of the sensor. The calculated charge output at each frequency is

g = D sen(SCrm)ed e xm) + ey (1,))5(oms 3, (33)

0<x, <Ly rs—bISWI
<rp <psthISE)

where x,, and x,, define the positions of the element centres of the surface grid elements, and s is the fraction of
each element that falls within the sensor outline. For elements completely inside the profile s will be unity, but
on the sensor border fractional values allow greater accuracy without the necessity of increasing the beam
surface quantisation. The signum operator ensures the correct polarity of the individual charge elements
according to S(x). This sensor model allows the complete response of the PVDF sensor to be modelled,
including its cross-axis response, even though the premise of the sensor design assumes a unidirectional
response.

It is noted that when using a Rayleigh—Ritz model, the model architecture differs. The displacement modes
are scaled and summed to produce a net displacement field, this is then converted into 0°W/dx* and 9°W/dy>
fields. A numerical version of Eq. (22) would then be used to calculate the response of the sensor.

6. Numerical results using beam system model

The numerical model was used to validate some of the assumptions made above and to predict the
performance of a sensor design when applied to the beam surface. The first 11 eigenfrequencies of
the non-uniform thickness beam resulting from the modal analysis are given in Table 1 along with the order of
the mode shapes. The analysis was also performed for a 2 mm-thick uniform beam of the same dimensions for
comparison. Note that at one frequency in each case a higher z mode order appears due to the beam moving in
the z-plane. This mode did not result from the (2-D) Rayleigh—Ritz analysis [3]. In practice, the effect of these
modes is likely to be minimal as the experimental implementation of the boundary conditions used here
(and discussed later on) only provides frictional, and not positive, constraint the z-direction.

6.1. Validation of a single-term strain-energy orthogonality condition

In order to validate the assumption made above that the total strain energy of the beam could be
approximated for low modal orders using only the strain-energy component in the x-direction, its proportion
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Table 1
Modal frequencies and modal orders (in x,y,z) of the first 11 modes of the uniform and the non-uniform thickness beams considered.
The proportion of strain energy in the x-axis to the total strain energy, «, for each mode is also shown

Mode Uniform beam Non-uniform beam
Freq (Hz) Modal order a(¢?,) Freq (Hz) Modal order a(¢?,)
1 31.819 (1,1,0) 0.8115 32.259 (1,1,0) 0.8277
2 127.46 (2,1,0) 0.8168 127.49 (2,1,0) 0.8199
3 287.38 (3,1,0) 0.8249 303.02 (3,1,0) 0.8377
4 411.97 (1,2,0) 0.0066 374.82 (1,2,0) 0.0095
5 512.17 (4,1,0) 0.8345 513.03 (4,1,0) 0.8425
6 802.34 (5,1,0) 0.8448 863.50 (5,1,0) 0.8512
7 831.53 (2,2,0) 0.0258 946.35 (2,2,0) 0.0608
8 1158.3 (6,1,0) 0.8551 1164.7 (6,1,0) 0.8645
9 1266.0 (3,2,0) 0.0560 1203.9 (3,2,0) 0.0712
10 1330.6 (0,0,1) 0.4934 1229.5 (0,0,1) 0.4328
11 1580.2 (7,1,0) 0.8648 1719.4 (7,1,0) 0.8663

of the total strain energy, «, was calculated for each strain mode, m, as

. L,E Le ,
) =g [ B 4/ U 57,2 (34)

and this is included in Table 1. The strain energy was calculated from the surface strain components using the
assumption of the strain being linearly dependent on z, as denoted in Eq. (14) for the x-axis component. It can
be seen that for all the modes of order (*,1,0) (of order unity in the y-direction) the strain component in the
x-direction accounts for 80-90% of the total strain energy, increasing with the modal order. The 2 mm thick
uniform beam has similar characteristics.

6.2. Development of sensor design

The design of a sensor is now detailed using intermediate steps to demonstrate how the above theory is
applied and also to allow some pertinent observations to be made. A sensor is designed to detect mode
(m,1), and is termed a “mode-m sensor”. Fig. 4 details the design of a mode-3 sensor. The displacement mode
shape is shown and the effect of the thicker central section is obvious where reduced curvature occurs. The
strain and stress on internal and surface planes (denoted in Fig. 1) along the beam are also shown around the
region of one of the discontinuities in thickness. On the mid-surface (MA) zero values of strain and stress are
seen, as expected. It is seen that away from the immediate region of the discontinuity the strain and stress
appear to be linearly related to z (the distance from the mid-surface plane) in both the thinner and thicker
sections. The strain and stress at levels M1 and S1 change over the step-like discontinuity in thickness in a
smooth fashion. However, the strain and stress on the levels exclusive to the thicker section (M2 and S2)
diminish as the discontinuity is approached, and are no longer linearly related to z. Careful examination also
reveals small differences between the strain and stress functions, especially in the immediate region of the
discontinuity. This is found to be more significant as the change in thickness increases. Hence calculating the
energy from the normalised strain (see Eq. (16)) in the region of discontinuities may induce a small error.

The strain energy corresponding to mode-3 is also shown. The central thicker section corresponds to
relatively small energy due to the reduced curvature. The maximum strain-energy density is seen in the thinner
section either side of the thicker section emphasizing that accurate measurement in this region is important for
good modal discrimination. A maximum value of strain energy is also seen in this location for other modes
except where, due to the modal order, a minimum in the strain energy occurs over the central region.

Both weighting functions ¢,(x) and g,.(x) are next shown. These are normalised to unity in the mid-section
of the thinner section of the beam, and are approximately a value of 2 (the value of g;,) in the centre region of
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(=) and second-order spatial derivative of W (- - -); (b) the levels of strain and stress of the internal and surface layers defined in Fig. 1;
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and (e) the sensor width profile function along the beam and detail in the vicinity of a discontinuity in thickness for S?;6 (=), SnT (---)and
Sy, (++-). All spatial variables are symmetric about the beam mid-length (x = 0.19 m).

the thicker section. However, as the surface strain in the thicker section diminishes towards the disconti-
nuity in thickness this leads to a large spike in the weighting function exceeding a value of 85. Lastly in
this figure, the profile of the sensors defined by g¢,(x) and g,.(x) are shown. In practice it is necessary to
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use truncated versions of the sensors where the maximum value of the sensor tails at the edges of the
thicker section are limited to the sensor width in the centre of this section (x = 0.19). These are also
modelled and denoted SHT (3,x) and S;(3,x). The significance of this truncation is considered below.
S5,(3,x) is also shown, and this profile naturally diminishes towards the discontinuity and truncation is not
necessary.

Finally, it is noted that the maximum values in the displacement mode shape, the strain-energy distribution
and the width in the two outer sensor lobes all coincide at similar values of x. However, the nodal positions in
the displacement mode shape do not correspond with the other two functions. One test of the integrity of the
numerical model would be to confirm correct positioning of the modal nodes with an experimental system.
This is much more easily done in terms of displacement but will not correspond with the zero-crossing points
of the sensor width function S(x).

6.3. Predicted modal discrimination

In order to predict the ability of a sensor in detecting only the desired mode when other
modes exist, the modal discrimination can be calculated by evaluating the orthogonality integral. Exact
modal orthogonality is not expected as the orthogonality condition is an approximate one and will
also be further limited due to practical restrictions in the implementation. Although the detection is
performed using the surface strain, it is necessary to normalise the mode shapes in terms of displacement as
this is the parameter being determined (via the measurement of surface strain). The modal discrimination is
considered for the three design methods, M = {h, n, o¢}. The modal discrimination, O,,, of a sensor designed
to detect mode d, and with sensor width profile S,,(d,x), in the presence of the normalised strain mode (}5; is
given by

i Sa(d, x)r,(x) dx
[ Su(d, x)y(x) dx

Fig. 5 shows O expressed in decibels for sensors designed to individually detect the first five modes
(mode-1 to mode-5) principally for sensor profile Sfe, but also for profiles S,, and S, . A practical
frequency range of interest would be typically less than 1kHz, although a range of up to 5kHz is
shown so that a more complete picture of the modal discrimination is demonstrated. The x-axis shows
each modal order (m,l) located at the value of its modal frequency on a linear scale denoted at the
top to enable the significance of errors to be seen with the proximity to the modal frequency. The modal
frequencies for a uniform thickness beam are approximately proportional to the modal order squared. With
reference to Table 1 this is only seen to be adhered to approximately for the non-uniform thickness beam.
The range of O is limited to 60 dB as greater signal to noise ratios are not realisable in practical systems
with a realistic noise floor. Furthermore, it is suggested that modal discrimination of about 40 dB is sufficient
in many systems.

In the figure it is seen that for odd-mode sensors the greater errors are produced from the unwanted odd
modes, and for even-mode sensors greater errors from unwanted even modes. For S;(l, x) the greatest errors
occur and the useful frequency range would have to be limited to about 500 Hz. The use of either S, or S,
would not achieve any reasonable frequency range of useful modal discrimination. The discrimination of the
mode-2 sensor also suffers from a similarly limited frequency range but is not so dependent upon the sensor
design method. The mode-3 sensor, which is implemented later on, is seen to have reasonably good predicted
modal discrimination up to about 3 kHz. It is seen that the higher the modal order of the sensor, in general the
better the modal discrimination.

It is interesting to note that the truncation of the tails in the centre sensor section, whilst a deviation from
the specified sensor design on practical grounds, has in general improved the discrimination. Also, for the
mode-2 and mode-4 sensors it is seen that S;, provides significantly better discrimination. This is surprising as
it is the most approximate method assuming a global linear strain-z relationship. However, the orthogonality
condition is approximate, as discussed above, and the sensor designs are obviously not optimal. For the odd-
mode sensors it is seen that S; has the best general performance.

Oy(d,m) = (35)
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The above predicted sensor performance assumes a zero-width sensor that has no variation in 0% W/dx>
across its width, nor response to bending in this direction (3>/dy?), but implicitly implements the required
weighting function S(x) along its length. The significance of the assumption of such a sensor will be
considered below when the numerical model and experimental results are presented. It is also a rather harsh
prediction as all modes are considered to be of equal amplitude. However, in practice it is usually the case that
the modal energy decreases with frequency. If the modal amplitudes are known then the actual amplitude
of each modal (error) component detected by a sensor could be predicted, as shown for this beam arrangement
in Ref. [3].

Finally, it is noted that the discrimination of sensors using the normalised strain (.S,, and SnT ) in general had
worse performance than Sg; and similar performance as S,,. These were not included here for clarity, but SnT
will be considered in the next section.
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6.4. Predicted mode-3 sensor response

Using the numerical model detailed above the frequency response of the mode-3 sensor S;(B, X) is given in
Fig. 6. It is seen that up to about 1kHz good modal discrimination is predicted and represents well the
amplitude of the target mode. A small glitch in the response around 850 Hz is seen to be larger for the sensor
designs SnT (3,x) and S;,(3,x) is an indication that S;(3,x) is the best design. Although apart from this the
responses appear to be similar.

Two other variations of the sensor S;(3, x) were considered: one where the PVDF sensor has no response to
bending in the y-direction (that is ¢}, = 0 in Eq. (24)—essentially a 1-D sensor), and one where there was a
sensor placement error of —1.1 mm in the x-axis. It can be seen that both these introduce errors in the response
that are larger than those due to different sensor design methods shown in part (a) of the figure. These errors
will be discussed further when the experimental results are presented.

7. Experimental implementation
7.1. Beam fabrication and assembly

The non-uniform thickness beam was fabricated from one continuous component being machined from a
larger block of stainless steel. Other options of implementing the change in thickness by adjoining additional
sections (as considered in Ref. [14]) would make the system more complex to model due incomplete transfer
of strain over a bonding interface, or non-uniform strain transfer if components such as rivets, for example,
were used.

The simply supported boundary condition was implemented by supporting each end of the beam in steel end
block. V-grooves were machined in each end block and similar smaller grooves in each beam end. A 1.5mm
diameter steel wire was trapped in between the beam and the support, located in the grooves, to assimilate a
hinged joint. One support was moveable, and adjusted to allow the smallest compression necessary to
support the beam and introduce the minimum of rotational stiffness or in-plane compression of the beam.
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The V-grooves were lubricated with graphite to reduce friction. One problem was that the machined beam had
a small amount of warping due to the machining of the thin-sections from a larger block. This was minimised
by reducing the material thickness in small steps alternately from each face to reduce the warping introduced
as the balance of internal stresses was relieved. For this reason a slightly higher compression force was
required between the end supports.

7.2. Piezoelectric actuator implementation

Near one beam end two actuators are placed towards the beam free edges so as to leave the inner section
free for the sensor placement. Both actuators were electrically driven in unison. Each actuator was comprised
of two piezoelectric elements of dimensions 40 x Smm? with thickness 250 um, and were collocated on each
side of the beam. When the elements of each actuator are driven electrically in anti-phase each actuator excites
the beam in bending. The elements are bonded to the beam using Araldite-D +HY956 (Ciba & Geigy) in a 5:1
ratio. Fine silk gauze was used as a spacing material to ensure electrical isolation between the beam and the
electrode and to ensure an even thickness of the bonding layer, which was about 25 um. A 2 mm section of the
upper electrode was previously separated to make a connection to the underside electrode by spluttering.
Given the thinness of the actuators the mechanical loading on the beam is negligible and not considered in the
FEA model.

7.3. PVDF sensor implementation

Forty-micrometer thick biaxially orientated PVDF material was used to construct the sensors. Each sensor
section was fabricated in the following way. First, a PVDF strip assembly is made from which one sensor
section outline will be transferred and cut. Electrical connections are made to the underside the sensor
strip by affixing a thin strip of plastic backed thin copper foil with electrically conductive tape and reinforcing
the connection with silver conductive paint. 3M Double Coated Tape 9570 (70 um thick) is then applied
to the cover the entire strip that will subsequently bond the underside of the PVDF sensor to the beam.
Next, the sensor outline for each section (correctly scaled in length and maximum width) is printed on to
tracing paper using an Ink Jet printer. The outline is transferred to the upper electrode by temporarily
applying non-deformable, no residue, transparent tape to the printed-paper surface, which is then
permanently applied to the upper electrode (the electrical connection is made through a small window in
the tape). The sensor is then trimmed to the outline, and satisfactory results were achieved cutting using a
sharp scalpel-type knife along a straight edge or by free hand. The estimated accuracy of the cutting process is
within one-third of a millimetre.

Particular care should be taken as the surface electrodes of the PVDF are very thin (in the region
of 0.03um [15]) and easily damaged. Thus extreme care should be taken in the handing of the
material—protecting contact from abrasion with all but soft surfaces. Also, contact with sharp objects, and
in particular test probes, is likely to dent or score the surface [14]. Contact should be achieved by smooth soft
conductive surfaces. Any damage may not easily visible but can have a detrimental effect to the sensor
performance.

The measurement of the capacitance of each sensor section is a good way of testing the integrity of the both
the electrical contacts and the electrodes. A capacitance meter with a resolution of at least 10 pF is needed. The
approximate capacitance of each sensor section can be calculated as a check, and also the similarity of
capacitance between similarly sized-sections can be verified. This is important in detecting contact failures
where capacitive coupling may result in which case an electrical signal can usually still be registered, with a
similar frequency response—albeit at a different level. This is particular important when electrically combining
sensor outputs. In the experimental system the relative error capacitances of the individual sections was less
than 2%.

After affixing the sections to the beam, taking care in their positioning, the electrical connections are made
to upper electrode using silver conductive paint and to underside electrode by rapid soldering to the copper
foil. Fig. 7 shows the full five-section mode-3 sensor applied to the beam surface. The required polarity of each
sensor section was achieved by the appropriate electrical connection to each section.
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Fig. 7. The beam system showing the five-section mode-3 PVDF sensor and the actuators. (The thin wires providing electrical connections
to the sensor are barely distinguishable.)
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Fig. 8. A schematic diagram of the experimental system showing the beam actuation and the sensing circuitry comprising of charge
amplifier (OPA129) and a high-pass filter (OP27). The numbered sensor sections are shown to scale and their connection polarity is
denoted.

7.4. Experimental set-up, sensing circuitry and signal processing

A schematic of the experimental set-up is shown in Fig. 8. The beam actuators are driven with a voltage of
+ 5V through screened cables to avoid interference with the vibration sensing. The low voltage is due to the
thinness of the actuators used (the strain being dependent upon the electric field and not the applied
voltage).

A disadvantage of PVDF sensors is the small electrical output signal and it is necessary to use a sensitive
charge amplifier with high input impedance and low input bias current. The charge amplifier circuit
used here is also shown in Fig. 8. The values of C,and R, determine the conversion of charge sensitivity
and the lower cut-off frequency (in this case: 2Hz) [16]. In addition, to remove any d.c. offsets from the
amplifier response, this is followed by a high-pass filter with cut-off at 2 Hz. The output voltage of the of the
amplifier is [16]

—AQ

Vow="¢, " (36)
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where Cyis the feedback capacitance and AQ the charge output of the sensor. This is for an ideal charge
amplifier and the sources of error and dependence on other system capacitances and resistances are discussed
in Ref. [17].

It is also necessary to adequately screen the sensor cables and the charge amplifier circuitry to eliminate
interference. A coherent grounding system should be used, avoiding ground loops and separating supply and
signal earths as much as possible. Due to the extremely small electrical charges and current involved, good
electrical isolation of the sensor electrodes and associated connections is required; even a resistance in the
order of mega-ohms will effectively be a ““short”.

The frequency response of the sensors was achieved using MLSSA [18], a system based on maximum length
sequences [19]. In brief, a two-valued bipolar signal of length 2'* is used to drive the system. The sequence has
an auto-correlation function that is effectively a delta function. The signal was sampled with a 12-bit ADC.
The auto-scaling function of the MLSSA application and the continuous nature of the excitation signal ensure
at least a resolution of 11-bits is achieved. A sampling frequency of 8 kHz was used, and a frequency resolution
of 0.49 Hz is achieved. Only a frequency range to 1kHz was considered for the experimental results. One
hundred frequency record averages were used, except for the individual response of sensor Section 3 where 200
averages were used due to the lower signal level.

8. Experimental results

The electric charge outputs of the individual sensor sections for the experimental system are given in Fig. 9
along with the predicted responses from the numerical model. Unwrapped phase is used and a pertinent
number of integer multiples of m are added to the experimental results to counter the phase offset due to the
low-frequency noise in the experimental system. As the gain of the amplifier depends on the total capacitance
of the sensor sections connected and the capacitance of the cable and op-amp input, the magnitude of the
measured results is adjusted accordingly. Good agreement is seen in general, especially for sensors 2 and 5. For
sensors 1 and 4 discrepancies in the frequencies of the anti-resonances from the numerical model are seen.
Sensor 3 shows significant error at frequencies below 200 Hz. In the region of 850 Hz three closely spaced
resonances are seen in place of the single resonance predicted for all sections. This is thought to be due to the
lack of integrity of the boundary conditions.

In Fig. 10 the response of the complete sensor (all the sections electrically combined as shown in Fig. 8) is
also shown. Considering the individual sensor responses in Fig. 9 it is evident that good modal discrimination
has been achieved and that there is generally faithful measurement of the true modal amplitude up to about
700 Hz. The errors above this frequency are expected due to similar errors in the individual section responses.
With reference to Table 1, the glitches at 120 and 500 Hz correspond to modes (2,1,0) and (4,1,0), and have
similar features in the response at these frequencies to those predicted due to sensor placement error and/or
reduced cross-axis sensitivity (see Fig. 6). It is suggested that transference of strain between the beam surface
and the PVDF material is not as faithful across its width as along the length of the sensor due to the difference
of dimension of the contiguous tape interface. These possible error sources are discussed further below.

Also shown in Fig. 10 is the summation of the individual section magnitude and phase-corrected responses
shown in Fig. 9. It is now seen that the errors at 120 and 500 Hz are now large spikes that are only about 10 dB
smaller than the peak amplitude. One reason for the difference between the sum of the individual responses
and the combined sensor is thought to be that when connected individually, the electrical loading effects for
each sensor section alter slightly. This interacts with the electrical loading of the charge amplifier and the
cables to slightly change the poles and/or zeros of the overall response. When the individual responses are
combined these slight pole-zero misalignments result in spikes in the frequency response. This effect is not
considered further here.

9. Discussion
Earlier work by the author [3] used a Rayleigh—Ritz model of the non-uniform thickness beam, which as

discussed is not valid in the region of the discontinuities in thickness. This is because in this case the apparent
surface strain is the product of the beam thickness and the second-order spatial derivative of displacement.
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Fig. 10. Bode plot response of the complete experimental five-section sensor (—) and the response synthesised by summing the individual
section responses shown in Fig. 9 (---). The true amplitude of mode-3 is shown arbitrarily scaled (==).

To accommodate the discontinuities a large number of basis functions (a half-sine series) were required, but an
effect equivalent to Gibb’s phenomenon in Fourier analysis was seen in the region of the discontinuity and
thus in the sensor profile as this was the basis for the sensor design. However, it is seen in Fig. 4 that no
discontinuity exists in the strain on the beam surface or on any inner plane. Some limited success of modal
discrimination for a similar non-uniform thickness beam was achieved but to a much lesser quality than
reported here [14] despite significant differences in the shape of the mid-sensor sections.

There are many possible errors in the both modelling and application of PVDF sensors. Obviously the
sensors should be implemented with the precise shape and location as modelled, however not all errors are
attributed to these. Here it has been shown that placement errors of about 0.3% of the beam length are
responsible for errors in the frequency response. Clark and Burke [4] also reported this as an explanation for
experimental errors using a similar beam and placement error size. However, errors are also possible from the
modelling of the beam and sensor as a 1-D system. From Table 1 it is seen that higher order modes in the
y-direction appear early on in the modal order and cannot be simply disregarded due to low-frequency
consideration. Apart from producing differences in modal frequencies of the (*,1,0) modes a 1-D model will
also produce two types of error in the PVDF sensor. First, a variation of the bending in the x-axis across the
sensor width, and secondly, if this variation has a non-zero second derivative then bending in the y-axis for
which the sensor will produce a separate response component. The deterioration of the response of an
apparently good sensor due to ignoring these has been illustrated in Ref. [3]. However, due to the suspected
reduced mechanical coupling between the beam surface and the sensor across its width the effective value of
€9, would be between 0 and €3, and so this error may not be so pronounced. Even so, it is seen to lead to errors
that appear similar to those for sensor placement errors.

In Ref. [3] the consequence of modal detection using PVDF sensors is discussed for a uniform thickness
beam using second spatial derivatives, which in this case is equivalent to surface strain. It is shown that there is
a natural amplification in the detected amplitude of higher order modes implicit in sensing in this domain.
Thus, the below-resonance residuals of higher order modes are much more significant and the sensor modal
discrimination must be better to achieve the same modal rejection as when using displacement, velocity or
acceleration sensing. In the case of a uniform thickness beam this factor is the wavenumber of the mode shape
squared. This analysis cannot be extended directly to non-uniform thickness beams but can be applied
qualitatively to suggest that a similar effect occurs.
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One further disadvantage of detection using strain sensors is seen with reference to Fig. 5, where the
normalised displacement, second spatial derivative and surface strain for the mode-3 are shown together. It is
seen that for relatively small deviations in the displacement, much larger deviations are seen for the other two
parameters. It is thus possible to conceive of a uniform thickness beam that has a small defect that is
insignificant in the displacement mode shape, but significant, for example, in the surface strain mode shape
and thus will cause errors in the application of strain sensors. Thus strain sensing is more sensitive than
displacement sensing to possibly unknown defects in surfaces to which they are applied. For this reason strain
modes are widely used in fault detection (for example see Ref. [20]).

Sensors to detect combinations of modes could be made from combining the individual shape
weighting functions, correctly scaled, for each mode to form a radiation mode sensor as would
be required for ASAC. It is noted that individual structural mode sensing is more stringent than
radiation mode detection. This is because radiation modes are usually combinations of structural modes
with orders of the same parity. Here, the modal discrimination errors are seen to correspond to the same
parity of the design mode. These error components may be masked by other desired modal components
with similar parity, or the modal amplitudes could be adjusted to compensate for the predicted error
components.

Finally, it is noted that the strain-energy-based orthogonality condition developed in this paper cannot be
applied to non-uniform thickness plates. As an example, assume a simply supported plate with a thickness
function /(x,y) that in the x-axis is equal to the function /4(x) of the beam considered here, but has uniform
thickness in the y-axis. Even though displacement field could be expressed as the product of separable plate
mode shapes (;Sf; and (;’),1: in x and y, respectively, as

WP(xa y) = Z An111¢r1;(x)¢5(y)7 (37)

mn

the mode shapes in the x-direction are not the same as those for a non-uniform thickness beam, that is
qb,i(x) # ¢,,(x). This is illustrated in Ref. [14]. This is caused by the greater effect of the coupling between plate
flexion in the two axes (caused by Poisson’s effect) due to either the dimension of the plate in the y-direction
being more significant than for the beam considered here, and/or boundary conditions other than free—free
conditions along the boundaries in the x-direction.

10. Conclusions

The design of PVDF strain sensors for modal detection of a simply supported non-uniform thickness beam
has been considered. Traditional kinetic-energy-based orthogonality conditions, based on displacement or its
temporal derivatives, are not applicable and a strain-energy-based orthogonality condition was developed.
This was done in both terms of spatial derivatives and the surface and the internal strain (and stress) of the
beam. The orthogonality condition is approximate, but results from a numerical model demonstrated good
modal discrimination although errors were greater for the two lowest modal orders. The design procedure
preceded using 1-D approximations of the beam and the PVDF sensor; however the numerical model was
capable of fully representing the system. It was shown that modelling the beam system and the PVDF sensor
as 1-D entities resulted in modelling errors. These are of similar significance to errors in the positioning of the
sensors that have been previously reported. Thus, errors in implementing such systems could be attributed to a
number of sources.

A modal sensor was implemented experimentally for a non-uniform thickness beam with a central section
augmented in thickness by a factor of two. The results corresponded well with those predicted by the
numerical model. The upper frequency range of the modal detection was in practice limited by possible errors
in the boundary conditions.

Finally, despite the advantages of PVDF sensors over other transducers in practical systems the
disadvantages of strain sensing instead of displacement (or velocity, or acceleration) sensing was discussed. It
was also shown that the orthogonality condition cannot be extended for application to non-uniform thickness
plates.
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Appendix A

This analysis follows closely to that of Dimitriadis et al. [13], but is derived here for the general case.
The actuator is defined in the main text. Assuming a plate of dimensions L, and L, with a rectangular
actuator with position defined by the coordinates x|, x,, y;, ¥», the moment couples along each edge are
defined by

my = my = Cogpe[H(x — x1) — H(x — x)I[H(y — ;) — H(y — y,)] (A1)

where H is the unit step function. The piezoelectric strain plate coupling term, Cy, and the induced strain in the
piezoceramic elements, ¢pe, are defined by

d3

I+ P 2
=—E, pe Z(h)2P,  epe = — A2ab
o ’l—vpl+vp—(l+vpe)P3(h/)’ e =V (A-22,5)
where
—Epe 1 =03 2
[ il 3y S U/ U (A.3a.b)
E, 1-0v2 2((h/2)° + ) + 3(h/2)¢?

Here E is the Young’s modulus, v the Poisson’s ratio, d3; a piezoelectric strain constant, / the plate thickness, ¢
the thickness of the actuator, and V the applied electric driving voltage. The subscripts p and pe denote the
plate and the piezoelectric element, respectively.

The equation of motion of the plate may be written using thin plate theory. This shows the effect
of the actuator induced moments, m, and m,, on the internal plate bending moments, M, M, and M,
and is

F*(My—my) M, (M, —m,)

2
0x2 + 0x0y 0y?

where m” is the plate area density. The moments can be transferred to the right-hand side, thus

"M, azMnyrazMy N
0x? 0x0y 0y? ox2 97

However, when the equation is expressed in terms of displacement, the derivation deviates from that of
Dimitriadis et al. as for a non-uniform thickness plate the plate flexural rigidity, EI (where I is the second
moment of area, and EI is equivalent to D), is a spatial variable. An equation with a fourth-order differential
operator cannot be formed, but instead the general case gives

G W GR W W . O'm,  O'm,
— |El(x,y) —5| +2 -— "(x, )W = al L.
0x?2 [ (x.7) ax2] + 0x0y 0x0y ze} T (%)) 0x?2 + 0y?
This may be dealt with by applying an analysis to a similar problem as considered by Cremer and Heckl [5].
A general equation of motion may be written using the differential operator L, which is defined by comparison
with the previous equation as

+m'(x, )W =0, (A.4)

2 2
o"m,  0°m,

+m" (x, )W = (A.5)

[El(x, ») ] + {EI (x,y) (A.6)

’m, azmy
oxz 02

LIW]— " (x, )0 W = (A.7)
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For a conservative system, each set of eigenfrequencies and eigenfunctions must satisfy the following
condition:

L[qsmn(x: y)] - m,/(x’ y)wzmd)mn(xa y) =0. (A8)

Expressing the displacement field as the sum of an infinite series of eigenfunctions and corresponding
amplitudes, A4,,,,, by

W= Apunm(x.)). (A.9)

Inserting Eq. (A.9) into Eq. (A.7) yields
y *m, *m,
D Al Ll (5620 = 105 1), (500} = S5t +
X y

m,n

(A.10)

and now subtracting Eq. (A.8) from the result, the differential operator vanishes, and multiplying both sides
by ¢,,,, and integrating over the entire surface and applying orthogonality, only a non-zero left-hand side is
obtained when mn = m'r’, thus

" azmx 6277’1
Ay = ) [ e85 = [ G y)( L ;) ds. (A1)
s s y
Choosing the first term on the right-hand side of the equation as an example
62mx / /
[ Bl ) TS = Cutpe [ 59 = 30) = 8 = [HG =y HG = ]dS (A1)
and after some algebraic manipulation and solution this produces
o%m, » (9 d
/ (l),,m(x,y) an/; dS — C08pe/ ( d)mn(xLy) _ ¢n1n(x1,y)> dy — C08peG;fm(X1,X2), (A13)
B X b, Ox Ox

where the function G, is defined for convenience. Similarly the second term is resolved as

0 i <6¢mn(x,y2) _ 6¢mn(X,y1)

2
m,,
/qumn(xay) ayz} ds = COSPC/ ay ay ) dx = C()Sperm(yl,yz). (A14)

X1
Using G and G , Eq. (A.12) may be now used to define the coefficients of the modes of the displace-

mn mn?
ment field
COS 6[Gx (XI,XQ) + Gy (yl’yZ)]

Amn — p mn mn , A15
Amn(wlzﬂn - wZ) ( )

where the modal mass 4,,, is defined as
Ay = / " (x, )2, p)dS. (A.16)

s

References

[1] C.R. Fuller, S.J. Elliott, P.A. Nelson, Active Control of Vibration, Academic Press, New York, 1996.

[2] N. Tanaka, S.D. Snyder, C.H. Hansen, Distributed parameter modal filtering using smart sensors, Journal of Vibration and Acoustics
118 (1996) 630-640.

[3] D. K. Anthony, P. Cobo, Measuring the vibrational modes of non-uniform beams with PVDF sensors using a strain energy
orthogonality condition, Proceedings of the 2004 International Conference on Noise and Vibration Engineering (ISMA 2004), 2004,
pp- 115-129.

[4] R.L. Clark, S.E. Burke, Practical limitations in achieving shaped modal sensors with induced strain materials, Journal of Vibration
and Acoustics 118 (1996) 668—674.



D.K. Anthony | Journal of Sound and Vibration 315 (2008) 65-87 87

[S] M. Heckl, L. Cremer, Structure-Borne Sound, Springer, Berlin, 1987.
[6] W. Weaver, S.P. Timoshenko, D.H. Young, Vibration Problems in Engineering, Wiley, New York, 1989.
[71 A.C. Ugural, Stresses in Plates and Shells, McGraw-Hill, New York, 1999.
[8] C.K. Lee, F.C. Moon, Modal sensors/actuators, Journal of Applied Mechanics 57 (1990) 434—441.
[9] Y. Gu, R.L. Clark, C.R. Fuller, A.C. Zander, Experiments on active control of plate vibration using piezoelectric actuators and
polyvinylidene fluoride (PVDF) modal sensors, Journal of Vibration and Acoustics 116 (1994) 303-308.
[10] A. Preumont, Vibration Control of Active Structures: An Introduction, Kluwer Academic, Dordrecht, 2002.
[11] ANSYS 9.0, ANSYS Inc., Canonsburg, USA. { www.ansys.com ).
[12] MATLAB 7.0, The MathWorks Inc., Natick MA. { www.mathworks.com ).
[13] E.K. Dimitriadis, C.R. Fuller, C.A. Rogers, Piezoelectric actuators for distributed vibration excitation of thin plates, Journal of
Vibrations and Acoustics 113 (1991) 100-107.
[14] D. K. Anthony, Sensores para medir independientemente modos estructurales de barras y placas no-uniformes para aplicacion al
control-activo-acustico-estructural, Project Report GR/AMB/0736/2004—Comunidad de Madrid, 2006 (in Spanish).
[15] Personal communication. Supplier of PVDF. Goodfellow Cambridge Ltd., Huntingdon, UK. February 2005.
[16] Burr-Brown Corporation, OPA129 Ultra-low Bias Current Difet Operational Amplifier, Data Sheet. 1994.
[17] R. Pallas-Areny, J.G. Webster, Sensors and Signal Conditioning, second ed., Wiley, New York, 2000.
[18] D. Rife, MLSSA: Maximum-length Sequence System Analyser. Reference Manual, Version 10.04, DRA Laboratories, 1996.
[19] D. Dife, J. Vanderkooy, Transfer-function measurements with maximum length sequences, Journal of the Audio Engineering Society
37 (6) (1989) 419-444.
[20] A.K. Pandey, M. Biswas, M.M. Samman, Damage detection from changes in curvature mode shapes, Journal of Sound and Vibration
145 (2) (1991) 321-332.


http://www.ansys.com
http://www.mathworks.com

	Modal detection for non-uniform thickness beams using continuous strain sensors and a strain-energy-based orthogonality condition
	Introduction
	Orthogonality
	Kinetic-energy-based orthogonality
	Strain-energy-based orthogonality
	Orthogonality condition based on second spatial derivative
	Orthogonality condition based on surface strain
	Equivalence of the two strain-energy-based orthogonality conditions


	Polyvinylidene fluoride strain sensors
	Sensor design
	Design based on second-order spatial derivative
	Design based on surface strain

	Numerical model of beam system
	Numerical results using beam system model
	Validation of a single-term strain-energy orthogonality condition
	Development of sensor design
	Predicted modal discrimination
	Predicted mode-3 sensor response

	Experimental implementation
	Beam fabrication and assembly
	Piezoelectric actuator implementation
	PVDF sensor implementation
	Experimental set-up, sensing circuitry and signal processing

	Experimental results
	Discussion
	Conclusions
	Acknowledgements
	References


